

Near Detector Site Preparation **WBS 2.8.1**

(Overview and Excavation Plan) June 5, 2007

Dixon Bogert

WBS 2.8.1

Near Detector Site Preparation

- Excavate/outfit a cavern for the NOVA Near Detector
 - Design and Engineer Cavern excavation
 - Design and Engineer Cavern/tunnel infrastructure
 - Tunnel/Cavern Infrastructure Contract
 - Cavern Excavation Contract
 - Connect and Certify FIRUS
 - Specify safety and training requirements
 - Beneficial Occupancy of New Cavern
 - Survey location for Detector

Red Bullets – Primarily this presentation

Blue Bullets – Some discussion this presentation; most next presentation

Black Bullets – Next Presentation

Design and Engineer Cavern Excavation

- Design and Engineer Cavern excavation
 - Fix Location of Cavern
 - Fix Size of Cavern
 - Design and Engineer Cavern with Tunneling A&E
 - Review and Certify Design

Fix Location of Cavern

- Locate center of Near Detector at the same angle from the NuMI Beamline axis as the Far Detector.
 - Angle measured from the calculated center of muon neutrino production – 184.45 m downstream from "target" on NuMI beamline (inside decay pipe)
 - Far detector at 14.572 mr.
 - Set center of Near Scintillator at same angle 32 foot upstream of entrance to MINOS Hall and 7 foot above floor, west of NuMI beamline.
 - New cavern location does not block access to MINOS Hall.
 - Leave adequate rock between new cavern and access passage.

Fix Size of Cavern

- The installation group will need to determine if it is acceptable to have the detector access limited to the west side.
- The installation group will need to determine if there is sufficient space above the detector for access.
- The installation group will need to verify the size of the opening into the cavern from the MINOS access passage for transporting the detector subassemblies.
- Upstream and downstream clearances will need to be checked.
- Clearance for HVAC ducts, lights, fire suppression, etc. will need to be checked.

Design/Engineer Cavern with A&E

- The rock excavation and support system must be designed by a competent engineer.
- The shale rock was rather uniform and the NuMI/MINOS excavation experience is probably relevant.
- The shale will have to be covered with shotcrete to prevent moisture from weakening the rock surfaces.
- The invert could be taken down to the top of the Galena Platteville structure.

WBS 2.8.1.1.4 Review and Certify Design

- The proposed excavation and design should be reviewed by an independent competent geologist/engineer.
- Life safety issues for the final design as well as during construction should be reviewed by an appropriate specialist.
- This includes ventilation issues.
- Minimizing the impact on other facilities in the MINOS Hall should be reviewed. (MINOS, Minerva, Coupp etc.)

Design/Engineer Cavern/tunnel infrastructure

- The design must reflect adequate space for lighting, fire suppression, ventilation, and any other required utilities.
- Provision for additional cooling of process water, if necessary, must be made.
- If the oil containment requires that there be no perimeter floor drains in the new cavern, then provision for removal of any infiltrating water must be made.
- A decision on including a drip roof must be made.
- Relocation of existing utilities blocking the future cavern access way and emergency exits must be designed.

Tunnel/Cavern Infrastructure Contract

- The relocation of the existing utilities must be done prior to the start of the excavation contract.
- The relocation of utilities will impact (require turning off) existing facilities in the MINOS Hall. The work must be scheduled during accelerator down times if possible.

Cavern Excavation Contract

- The excavation contract should be planned so that the impact on operating facilities is minimized.
- If existing facilities operations could be maintained, that would be beneficial.
- The elapsed time for the excavation should be minimized to keep costs and other impacts down.
- Investigation of the possible use of a road-header rather than drill and blast techniques could be promising.
- DOE Safety expectations must be included in all aspects of the contract and execution of the work.

Specify safety and training requirements

- DOE safety expectations must be emphasized in the contract and during execution of the work.
- If other facilities remain in operation during the excavation, then additional training of staff entering the MINOS shaft, access area, and MINOS Hall must be provided.

Beneficial Occupancy of New Cavern

• Provision for a smooth transition to the outfitting contractor following the excavation work must be included.

Cost and Schedule Estimates

- The basis of estimate for this work included experience from excavation of the MINOS Cavern at Soudan and the NuMI/MINOS excavation at Fermilab.
- An estimate of the workforce and methodology was also made.
- The basis of estimate information is available to the reviewers.
- Supplemental Information: See NOVA Doc 1922.